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The significant postharvest loss of perishable foods, mainly due to inefficiencies in handling, sorting, 
and quality assessment, underscores the critical need for advanced automation solutions in the 
food supply chain. This paper explores developing and implementing robotic systems for 
postharvest handling and sorting perishable foods, focusing on innovations in sensor technology, 
machine learning, and soft robotics to improve quality retention and reduce damage. It provides an 
overview of the challenges faced in postharvest logistics and examines the role of automated 
systems in enhancing efficiency and scalability within the agricultural sector. Integrating quality-
assessment sensors, such as hyperspectral imaging, and machine-learning algorithms facilitates 
real-time produce sorting based on key quality indicators. At the same time, soft robotics offer a 
solution for gently handling fragile items. Through case studies and performance evaluations, this 
study illustrates how robotic systems can effectively address labor shortages, minimize food waste, 
and improve supply chain transparency, ultimately contributing to sustainable food systems and 
increased profitability for stakeholders across the value chain. 
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INTRODUCTION 

Perishable products are prone to spoilage and loss of freshness postharvest. Approximately 1.3 billion metric tons of food 
produced for human consumption are wasted annually, leading to an estimated US$1 trillion in spoils (Durán-Sandoval et al., 

2023). Globally, food supply routes are increasingly being threatened due to the entry of pollutants, contaminants, and toxic 

elements. Modern consumers are grossly inconvenienced by purchasing perishables whose intrinsic and extrinsic qualities are 
masked or hidden and, therefore, find it difficult to correctly assess the actual decay state (Makanjuola et al., 2020). Speedy and 

efficient sorting and segregation of food commodities are apparent needs for all stakeholders involved from training, appraising, 

research, and extension perspectives (Kaur et al., 2023; Daszkiewicz, 2022; Khan et al., 2024; Adedeji, 2022). 
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Automation in the postharvest handling of fruits and vegetables is the most effective solution for minimizing or eliminating food 
waste for the retailer or the consumer (Krishnamma et al., 2024). Interest in handling food through technological intervention 

shows a paradigm shift in the commercial philosophy of operation. In addition to working with rural produce such as fruits and 

vegetables, it provides an opportunity to transfer value to individual farmers who aspire to have a more significant role in the 
food production chain. Modern and advanced robotic-based systems, with their better speed and efficiency, are beneficial to 

fulfilling the demand for quick sorting of fruits and vegetables without causing any damage to the products (Zhou et al., 2022) 

(Chauhan et al., 2022). The robotic systems for postharvest handling have more advantages than traditional methods, which 
can grade the products based on several physical, mechanical, and electrical properties. The computer vision and machine 

learning-based sorting systems also provide high-quality product grading at a lower cost. These systems have a crucial effect 

on lowering postharvest losses significantly and greatly help decision-making (Singh et al., 2022; Vrochidou et al., 2022). 

OVERVIEW OF POSTHARVEST CHALLENGES WITH PERISHABLE FOODS 

Postharvest food processing is the first stage of a complex chain of events between harvest at the farm and final consumption 
by the customer. A prolonged time delay from harvest creates food quality challenges for fruits and vegetables, which are mainly 

at risk from the following types of postharvest spoilage:  

1. Physical injury and damage during harvesting, handling, and mechanical processing after harvest; 

2. Increased susceptibility to microbial and fungal infections; 
3. Undesirable phenotypic changes in ripening, including colour and starch accumulation and flesh softening. 

Enhanced perishability and the potential for physical damage result in low economic returns when the fruits and vegetables are 
finally placed on the market (Etefa et al., 2022). Growing demand for a constant supply of high-quality fruit and vegetable 

products with varying ripeness adds complexity and uncertainty to postharvest logistics. The average worldwide rate of 

postharvest wastage in fruits and vegetables is 25% and 30%, respectively; in the agricultural setting, up to 40% of edible food 
volume is wasted (Ali et al., 2021). The inefficiency of hard manual labor for crop handling worsens substantial postharvest food 

losses. Traders with few alternatives regard crop distress and spoilage during transport and roadblocks, particularly as an 

unavoidable aspect of handling fresh goods. Field-to-market fruits and vegetables may feedstock various industries and factories 
from the initial harvest to the final consumer. Early damage disqualifies many crop products planned for processing, and the 

ones that go through processing are eventually separated (Opara et al., 2021). Perishability alone means that goods such as 

potatoes and carrots experience rapid decomposition during field processing due to moisture loss and physical injury. Particularly 
in subtropical climates, evacuating the field and beginning the transportation process is sometimes not economically feasible 

(Lufu et al., 2020). 

SIGNIFICANCE OF AUTOMATION IN REDUCING POSTHARVEST LOSSES 

Significant postharvest losses are reported in perishable foods like fruits, vegetables, and tea, attributed primarily to poor 

handling and sorting during postharvest operations (Anand & Barua, 2022). Automation, particularly robotic systems, helps to 
address some of the issues related to handling and sorting operations. Automation can replace a considerable amount of manual 

labor, which is tiresome and time-consuming, and reduce human errors. This will streamline and bring more efficiency to the 

operations, which ultimately helps in delivering an enhanced quality of the food products to the consumer. Timely handling of 
perishable foods in the postharvest phase will also help extend the shelf life of the produce, thus reducing wastage and 

postharvest losses (Bisht & Singh, 2024). Moreover, sorting makes the packaging process simpler and more accurate and 
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maximizes the food quality produced. This restoration also reduces operational and packaging costs as it minimizes workers' 
need for hands-on sorting (Pokhrel, 2021). 

 

Figure 1: Representation of the roles of robotics in the post-harvest supply chain. 

Automation can also make on-time sorting of the produce, as a result of which traceability of the food items in the supply chain 

can be maintained throughout the storing, processing, and transportation in pre- and post-market phases (Bhutta & Ahmad, 

2021; Balamurugan et al., 2022). In developing societies, the implication of automation is more heavily acknowledged than in 
developed societies. Automating the overall sorting system and the treatment process had no adverse effects on profitability; 

instead, it improved the industry's competitive edge. The advancement of automated technology developments and the move 

towards sustainability objectives through technical progress and research have broad implications for the agricultural 
commodities sector (Haji et al., 2020; Behnke & Janssen, 2020). 

In the last few years, several robotic systems for post-harvest handling and sorting have been proposed to balance the growing 

demand for food and labor scarcity (Chauhan et al., 2022; Zhou et al., 2022). Most of these studies are lab-scale to explore new 

issues or investigate the implementation of specific devices or new vision techniques. The research in robotics has undergone 
several development phases, starting from the study of robot hardware, the introduction of sensors and intelligent systems to 

ensure robots can interact more efficiently with the environment, the design of new strategies to control the components and the 

entire system, and new business models to ensure rapid market placement of products (Fei & Vougioukas, 2021). Research 

into more efficient, integrated post-harvest methods is limited to minimising physiological deterioration of non-damaged products, 
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consequently extending the freshness, safety, and shelf life of foods. Despite the efforts and high potential of the current 
environment and food robotic technologies, the sophistication of the post-harvest management process, improvement of 

aesthetic quality, and on-time delivery to the market are still temporary bottlenecks. There is diversity in the methods employed, 

and the design objectives of technological tools, and the primary motivation is to improve food handling efficiency (Faheem et 
al., 2021). Therefore, while many studies have been conducted on robot handling efficiency, there are no unified or standardized 

research methodologies to compare the performance of developed robotic systems versus traditional food handling operations 

for specific post-harvest fruit handling operations (Bharad & Khanpara, 2024; Vrochidou et al., 2022). 

ROBOTIC SYSTEM DESIGN AND SPECIFICATION 

Robot and robotic system design is fundamental to realizing the agility of picking for various perishable products. This robotic 
system must have mobility properties to swiftly move along so-called rails near the vertically suspended products in their bulk 

storage space or on a wired 3D path(Chauhan et al., 2022). The system should also be very dexterous to robotically handle 

different types of vegetables or fruits of different sizes and shapes, such as cauliflower, cucumber, tomato, and broccoli. For 
autonomous operation, this robot should be capable of automated and remote control and designated location with automated 

fruit selection based on ripeness and autofluorescence from fungi and insects. To facilitate the pick module, the prototype robot 

was tested during the summer by humans, who controlled it using a state-of-the-art virtual robot control interface. In contrast, 
the waste pack zone was manually controlled separately. The human-operated waste pack system is a development platform 

and can be substituted with automated waste packing to facilitate early deployment (Haji et al., 2020). 

It is essential to understand and analyze the requirements, which are based on the actual needs of the farm and have also been 

informed through a survey of farmers and a dedicated user engagement large group meeting. Engineering simulations, tools 

used in toppling handling, robotic design considerations, and how initial prototypes are integrated into the system in a preliminary 
real-world demonstration are also discussed. Such a robotic design control philosophy is based on seven engineering principles, 

including durability, enhancement, dexterity, versatility, and automation, as described in the objectives. An overview of the 

avatars of robots presenting the robotic aids for the commodity system is shown. The concept for a dedicated robot picker 
system is depicted. The stages planned to develop the robotic system for toppling are presented. 

Integration of sensors for quality assessment (ripeness, color, size) 

To perform the sorting of perishable food fully automatically, a robotic system requires sensor technology to assess the quality 

of food items: ripeness, color, and size. Several studies have been conducted in which different sensor technologies have been 

assessed for quality assessment.  
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Table 1: Case Studies on Sensor Technologies for Quality Assessment in Perishable Food Sorting 

Case Study Sensor 
Technology 

Quality 
Parameters 
Assessed 

Methodology Key Findings Challenges 

Sorting Tomatoes 
(Garg et al.2022) 

Visual Sensors Ripeness, 
Color 

Visual light spectrum 
sensors capture color, 
texture, and shape 
data of tomatoes 

Visual sensors effectively 
assess ripeness and 
uniformity in tomatoes, 
with high-speed 
processing 

Limited detection of 
internal defects, 
reliance on ambient 
lighting 

Citrus Fruits 
Sorting 
(Nikzadfar et 
al.2024) 

Hyperspectral 
Imaging 

Ripeness, 
Size, Defects 

Hyperspectral sensors 
capture visible and NIR 
data for quality grading 

Combines spatial and 
spectral data; detects 
ripeness and hidden 
defects such as bruises 
or fungal infections 

High cost and sensitivity 
to environmental 
conditions (dust, 
temperature, moisture) 

Avocado Maturity 
Assessment) 
(Walker et 
al.2023) 

NIR 
Spectroscopy 

Internal 
Ripeness, 
Texture 

Near-infrared sensors 
analyze internal 
properties based on 
reflected light 

Successfully 
distinguishes between 
ripe and unripe 
avocados, minimizes 
handling damage 

Requires calibration for 
different varieties, 
influenced by external 
factors (humidity, 
temperature) 

Apple Grading 
System (Yu et 
al.2024) 

Visual and 
Color Sensors 

Size, Color, 
Shape 

Color space analysis 
and size 
measurements to 
classify apples 

Efficiently sorts apples 
based on color uniformity, 
size, and shape 
consistency for market 
specifications 

Limited to external 
quality traits; does not 
assess internal ripeness 
or early signs of decay 

Strawberry 
Bruising 
Detection 
(Nikzadfar et 
al.2024) 

Hyperspectral 
and UV 
Sensors 

Damage, 
Ripeness 

Combines 
hyperspectral and UV 
sensors to detect 
bruising and ripeness 
indicators 

Detects surface and 
subsurface bruising 
effectively, reducing 
waste by eliminating 
damaged strawberries 
early 

Requires controlled 
lighting and calibration; 
complex data 
processing 

Poor environmental conditions can impact the performance of the technology by limiting the number of quality-related food traits 

that can be obtained from it. Enormous research efforts are required to enhance the accuracy of sorting technologies in robotic 

systems (Chen & Yu, 2021; Kumar et al., 2021; Van Hilten & Wolfert, 2022; Zhang et al., 2020). 

Development of Soft Robotics for Gentle Handling 

The development of soft robotics is essential for robotic grippers to handle and pick up perishable foods gently. The reasoning 

is that if a product is gripped too hard or in the wrong place, skin and tissues can burst, resulting in immediate bruising or 
developing a bruise that grows during storage and results in low product quality at the time of purchase. The softness of the 

gripper material is essential for handling fresh produce, as it has been found to reduce the risk of tissue damage from bruising. 

Most describe the use of flexible materials like silicones and urethane elastomers. The different flexural modulus and the 
coefficient of friction of those materials were tested and compared. Simulations and models of new gripper designs are used to 

predict the performance of the design for food applications. The materials with the best performance are then selected and 

tested. 
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Table 2: Overview of Soft Robotic Grippers for Gentle Handling of Fresh Produce 

Case Study Focus Area Material Used Testing Protocols Key Findings Challenges 

Handling of Fresh 
Produce with Soft 
Grippers (Elfferich et 
al., 2022) 

Material 
Flexibility and 
Grip 

Silicone, 
Urethane 
Elastomers 

Performance 
simulations and 
flexural modulus 
testing 

Silicone and urethane 
materials effectively 
reduce bruising by 
adapting to fruit shape 
and texture 

Flexibility varies under 
temperature changes; 
some materials degrade 
quickly with use 

Robotic Grippers for 
Delicate 
Fruits  (Navas et 
al.2021) 

Gripper 
Surface 
Texture 

Micro- and 
Nano-
fabricated Si-
based 
materials 

Controlled 
experiments with load 
cells and surface 
interaction testing 

Increased surface 
roughness improves grip 
strength and minimizes 
slippage for delicate 
fruits 

Requires high-precision 
manufacturing, making it 
costly to implement 

Impact Assessment 
for Peaches and 
Apples (Zhang et 
al.2020) 

Testing 
Fragility and 
Impact 

Composite 
Elastomers 
with Paper 
Coating 

High-speed camera 
and sensor data 
capture for 
indentation analysis 

High-speed imagery 
showed that softer 
materials reduce 
bruising in peaches due 
to controlled force 
distribution 

Apples withstand higher 
stress than peaches; 
testing shows variation in 
force needed per fruit 
type 

Adaptive Materials 
for Soft Grippers 
(Chen et al., 2022) 

Reversibility 
and 
Adaptability 

Bio-inspired 
Adaptive 
Polymers 

Repetitive grip-
release tests and 
durability 
measurements 

Bio-inspired polymers 
show high adaptability 
and reversible adhesion, 
ideal for fragile produce 
handling 

Limited by polymer 
lifespan and 
environmental sensitivity 

Testing Soft 
Grippers on Mixed 
Produce (Elfferich et 
al., 2022) 

Mixed 
Produce 
Handling 

PVA, PVEV, 
PVALV 
polymers 

Multi-fruit trials with 
force sensors and 
indentation 
measurement 

PVA-based polymers 
perform well under 
repetitive use, allowing 
for efficient gentle 
handling of diverse 
produce types 

Limited resistance to high 
elongation; may lose 
elasticity with long-term 
use 

Overall, soft robotics can aid in finding a balance between theory and practice in speeding up development and improving the 

efficiency and product quality maintenance of end-effectors for robotic systems. More research on the combination of material 

and mechanical properties is also needed. 

Sensor Technology for Automated Quality Sorting 

Sensor Technology for Automated Quality Sorting One of the key steps in the post-harvest handling of perishable foods is the 
assessment of quality, which determines the subsequent treatment of individual foodstuffs. Automated quality assessment is a 

critical factor in further developing automated robotic systems in food logistics and shall improve quality in post-harvest handling 

of foods (Duong et al., 2020). The application of machine learning algorithms allows the integration of multiple sensor signals 
and the more efficient application of models and patterns during the quality assessment process. This will be a significant step 

for developing automated sorting applications (Hassoun et al., 2023; Bader & Rahimifard, 2020). 

Sensors combined with suitable algorithms are a potential key technology in automated food sorting applications. There are 

some sensor technology approaches to automate food quality estimation or classification. These technologies can be classified 
according to sensor type, such as visual, hyperspectral, and multispectral sensors. These sensors have been examined for 

several applications in horticulture to assess their potential. The data collected by sensor systems must be processed. In the 

case of simple food sorting operations, the data is typically a measure of product color, size, and basic shape. The data can 
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pass the product through or to a reject bin in these cases. Automated sorting generally increases throughput speed as well as 
accuracy. The finer levels of processing decrease sorting times, reduce waste and improve product quality. The following table 

explores sensor technology in food sorting systems in greater detail (Ling et al., 2024). 

Table 3: Comparison of Sensor Technologies for Automated Quality Sorting in Perishable Foods 

Case Study Sensor Type Quality 
Parameters 
Assessed 

Methodology Key Findings Challenges 

Apple Quality 
Sorting  (Yu et 
al.2024) 

Visual Sensors Color, Shape, 
External 
Damage 

Visible light sensors 
capture color and 
shape to assess 
visual quality 

Effectively sorts apples 
based on visible quality, 
like uniform color and 
shape, for retail 
specifications 

Limited in detecting 
internal defects or 
decay not visible on the 
surface 

Citrus Ripeness and 
Decay (Shaikh et al., 
2022) 

Hyperspectral 
Imaging 

Ripeness, 
Bruising, 
Fungal 
Infection 

Spectral imaging 
combines visual and 
NIR data to detect 
internal decay 

Hyperspectral sensors 
accurately assess 
ripeness and detect 
early signs of fungal 
decay in citrus fruits 

High cost of 
hyperspectral 
equipment and 
sensitivity to 
environmental 
conditions 

Fat-Rich Produce 
Sorting 
(Avocados)(Ismail & 
Malik, 2022) 

Spectral 
Sensors 

Internal 
Composition, 
Ripeness 

NIR sensors 
measure molecular 
structure variations 
in fat content 

Successful in 
distinguishing fat-rich, 
ripe avocados, helping 
reduce damage during 
sorting 

Requires calibration for 
each variety; affected 
by external temperature 
and humidity 

Tomato Sorting for 
Freshness (Shaikh et 
al., 2022) 

Multispectral 
Sensors 

Color, Texture, 
Ripeness 

Combines visual, 
NIR, and infrared 
data to assess 
ripeness and 
firmness 

Provides consistent 
sorting by ripeness, 
reducing waste and 
ensuring optimal market 
quality 

Multispectral sensors 
are sensitive to 
environmental changes 
and require frequent 
recalibration 

Berry Quality Sorting 
for Minimal Bruising 
(Ashtiani et al.2021) 

Visual and 
Hyperspectral 
Sensors 

Surface 
Bruising, 
Maturity 

High-resolution 
imagery and spectral 
analysis for bruise 
and ripeness 
assessment 

Accurately detects 
bruising and sorts 
berries by maturity 
level, preserving quality 
during packaging and 
transport 

Limited in outdoor 
settings where lighting 
and temperature vary; 
hyperspectral data 
requires large storage 

Machine learning algorithms for automated sorting 

One step further in terms of automation is the implementation of machine learning algorithms as part of the system for detecting 
the product's internal and external characteristics for postharvest handling and quality assessment purposes (Singh et al., 2022). 

A faster and more precise machine-learning mechanism is necessary when using high-resolution sensors. Using the data 

gathered by several sensors that show external and internal product attributes, machine learning algorithms can better predict 

the product's quality features (Chen et al., 2024). The filters used in machine learning can identify patterns in the data and make 
better decisions for sorting the product than what is usually visible in the case of human-operated sorting lines. Another way to 

use machine learning algorithms is to detect external pattern symptoms that are characteristic of the product's deterioration 

appearance. The comprehensive review by Pandey et al. (2023) outlines the fundamentals and potential of machine learning 
techniques in fruit and vegetable preservation, underscoring their effectiveness as emerging tools in food safety. 
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Complexity and non-linearity are the critical triggers while designing machine learning algorithms and workflows. Using large-
scale datasets for training, machine learning algorithms can better predict the characteristics and attributes of the food product 

along with defects and quality. Data is an important driver when working with machine learning modules in the postharvest 

domain; it has to be carefully and accurately recorded in order to ensure that the algorithms are well-trained for a particular 
application  

Table 4:  Machine learning algorithms applied in automated sorting of perishable foods (Ngongoma, 2024; Miraei Ashtiani et al., 
2021) 

Produce 
Type 

Algorithm Quality 
Parameters 
Assessed 

Methodology Key Findings Challenges 

Tomatoes Convolutional 
Neural Network 
(CNN) 

Ripeness, Color CNN-based models process 
images to classify ripeness 
based on color and texture. 

Achieved high accuracy in 
identifying ripeness, 
reducing sorting time. 

High computational 
requirements; sensitive to 
image quality. 

Apples Support Vector 
Machine (SVM) 

Size, Shape, 
Color 

SVM trained on spectral data 
for shape and size 
classification. 

Accurately classifies 
apples based on size and 
shape, reducing manual 
errors. 

Requires regular 
calibration; does not detect 
internal defects. 

Avocados K-Nearest 
Neighbors (KNN) 

Internal Maturity, 
Firmness 

Uses sensor data (NIR) and 
KNN algorithm to assess 
firmness levels. 

Improved sorting accuracy 
and reduced handling 
damage. 

Sensitive to environmental 
factors like humidity and 
temperature. 

Citrus Fruits Decision Tree Ripeness, 
Bruising 

Decision tree classifies 
ripeness and detects bruising 
using hyperspectral data. 

Enhanced ability to detect 
early signs of decay and 
bruising. 

High cost of hyperspectral 
equipment; requires 
frequent updates. 

Strawberries Random Forest Surface 
Bruising, 
Maturity 

Random Forest model 
processes multispectral data to 
detect bruising. 

Accurately detects surface 
damage and maturity, 
preserving quality. 

Sensitive to environmental 
conditions, impacting data 
consistency. 

Continuous learning is crucial when working with this module type; data should be recorded and periodically updated for 

optimized performance. With a correctly trained algorithm, the system can predict whether a characteristic is in the regular stage 

or not and the next stage level of deterioration of the defect or parameter. 

DISCUSSION 

A robotic system designed for handling and sorting perishable foods should preferably outweigh traditional methodologies to be 

widely accepted by producers, packers, manufacturers, and consumers. Robotic post-harvest handling and sorting systems are 

demonstrated to be superior to traditional handling methods in many ways. A robotic system that performs pick-and-place tasks 
enhances the process's flexibility in collecting data. Using a perforated container to vacuum and deliver food products to a 

centralised location in the process line is comparable to an automated line used by vendors. Robots can grasp objects with more 

excellent care and less pressure than before. Data suggest that robotic systems can boost fruit operational efficiency to the most 
significant degree. 

Labour efficacy is improved, and the quality of sorted products is also increased. They are in good agreement with existing 

systems. A vision system to assess internal quality will improve product quality. Vision technology is costly and requires much 

time to program for each data set. Whole object learning is used to create and implement a deep learning framework, saving 
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researchers time and resources. Conveyors and rigid paths are more efficient, resulting in reduced time penalties. Robots 
created to deal with the post-harvest scenario can be scaled to address a variety of dynamics. Logistics and cost are two main 

concerns that must be addressed. Sterile handler arms are a new idea. This robotic system improves operations. Worker support 

has been enhanced, and how we work is also beginning to improve. Only various scenarios have been inspected up to this 
point. Only a few stations on the processing line have been mechanised. Until now, only some stations in the post-harvest line 

have been improved. To the same degree, manufacturing has been shown to improve it. 

Comparison with traditional handling methods 

Traditional handling methods in agriculture are less efficient than automated systems. Manual sorting or grading requires 

significantly higher labor requirements, as manual dexterity and concentration are necessary. Physical sorting, especially 
dragging from one place to another, substantially damages fruit properties.  

Table 5: Comparison between Traditional Handling Methods and Automated Systems in Postharvest Sorting 

Aspect Traditional Handling Methods Automated Systems 

Labor Requirements High; requires significant manual dexterity and focus 
Low; automation reduces manual labor and reliance on human 
operators 

Efficiency 
Lower efficiency, especially with increased worker 
fatigue 

Higher efficiency; faster sorting and grading with vision 
systems 

Impact on Product 
Quality 

Physical sorting and dragging increase risk of 
damage, bruising, and loss of quality Reduces physical damage and handling-related bruising 

Fatigue Factor 
Workers experience fatigue over long hours, leading 
to decline in sorting quality Not affected by fatigue; maintains consistent quality in sorting 

Speed Slower; typically lower throughput 
Faster sorting throughput, saving up to 370 hours annually with 
optimised sorting speed 

Damage Statistics 
(e.g., Kiwifruit) 

Physical sorting can damage up to 45% of fruits; 
handlers apply force, causing drop damage up to 
18% 

Automated systems with conveyors and sensors reduce the 
need for manual contact, thus lowering drop damage 
significantly 

Skill Retention 
Requires ongoing skill training to maintain quality in 
sorting and grading 

Minimal skill retention needed; automated systems can handle 
consistency in sorting 

Financial Modeling 
Lower initial investment but shorter ROI (5 years or 
less for manual sorting houses) 

Higher initial investment, but longer ROI (10–15 years), with 
improved long-term cost savings 

Scalability 
Limited scalability due to labor constraints and 
physical demands 

Highly scalable; automation can adapt to larger volumes and 
operate continuously 

Consistency Variable quality due to human factors High consistency with programmed sorting standards 

CONCLUSION 

The advancements in robotic systems for the postharvest handling and sorting of perishable foods represent a paradigm shift in 

agricultural logistics and food quality management. Robotic systems with advanced sensor technology and machine learning 
algorithms provide a highly efficient and scalable alternative to traditional, labour-intensive handling methods. Deploying quality-

assessment sensors and applying soft robotics for gentle handling is crucial in minimising damage, reducing waste, and 
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maintaining fresh produce's nutritional and aesthetic quality. Despite the high initial investment, the long-term benefits, including 
lower operational costs, extended shelf life, and enhanced marketability of produce, make robotic systems a promising solution 

for the agricultural industry. 

However, widespread adoption requires overcoming scalability, cost, and workforce retraining barriers. Collaboration among 

technology providers, industry stakeholders, and regulatory bodies is essential to standardise best practices and facilitate 
industry-wide integration. Future research should focus on refining sensor accuracy, exploring adaptive soft robotics for varied 

produce, and developing cost-effective models to broaden accessibility. As these technologies continue to evolve, robotic 

systems hold the potential to revolutionise postharvest operations, supporting a more resilient and sustainable food supply chain. 
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